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ABSTRACT

This paper proposes a non-linear term structure model that nests the
discrete and continuous time models as special cases. I estimate the model
non-parametrically using nearest-neighbours regression. In sample, the
non-linear model matches the standard theories, but out of sample, it offers
substantial improvement. Linear models fail to track future interest rates: a
random walk dominates the forward rate as a predictor for 3-month
Treasury bills. A non-linear forecast based on the spread is shown
statistically to be the best forecast.
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The expectations theory of the term structure links long-term interest rates to unobserved
sequences of future short-term rates. In the standard risk-neutral framework, the z-period rate
equals a discounted sequence of 7 future one-period rates. Empirical evidence on the linear
model, though voluminous, is largely discouraging. As Fama (1984) notes in an article from
which I draw the title, forward rates, unadjusted for risk premia, are poor forecasts of spot rates.
Shiller, Campbell and Schoenholtz (1983) observe: ‘The simple theory that the slope of the
term structure can be used to forecast the direction of future changes in the interest rate seem
worthless.’

Subsequent research has been less pessimistic. Fama and Bliss (1987) find predictive power at
the long end of the maturity spectrum. Fama (1990) and Mishkin (1990) are able to predict
future inflation and real rates with the yield curve. Still, one is led to question the validity of the
expectations hypothesis when forecasts of short-term rates even 3 months ahead are so poor. I
show below that a random walk dominates the forward rate as a predictor of the 3-month ahead,
3-month bill rate.

This paper contends that non-linearity is an important component of the empirical failure of
the expectations hypothesis. The standard models impose linearity so as to make the bond
pricing relation tractable empirically. In the discrete time framework developed by Shiller
(1979) and Shiller, Campbell and Schoenholtz (1983), long-term rates are equated to expected
short-term rates through a linearization of the holding period yield. Higher-order non-linear
terms are omitted that I find to be important empirically. In the continuous time framework of
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Cox, Ingersoll and Ross (1985), the expected future spot rates are linear functions of the
instantaneous rate of interest. This excludes interesting non-linearities like the time-varying risk
premia found by Fama and Bliss (1987) and Stambaugh (1988).

The approach taken here is to allow future spot rates to vary non-linearly with underlying
factors, which may include current spot rates. Standard estimation procedures are inappropriate
in this setting, leading me to pursue a non-parametric approach. In so doing, I can examine a
highly flexible functional relationship for the yield curve that nests the two popular term
structure models as special cases.

Recent work by Dunn and Singleton (1986) and Lee (1989) has tried to incorporate non-
linearities into the term structure as well. Dunn and Singleton look at a model with non-
separable utility and durable goods. Lee allows for a covariance between the marginal utility of
consumption in adjacent periods. Both papers, however, use only a portion of the information at
hand, limiting their analysis to a method of moments estimation of the first-order conditions.
While Euler equation methods provide tests of particular restrictions imposed by the model,
they are generally unsuitable for the forecasting exercises I consider below.

The innovation of this paper is to test the non-linear model non-parametrically. A non-
parametric approach provides great latitude in specification and distributional assumptions. The
only restriction imposed on the data-generating mechanism for bond prices is that the expected
future spot rate be a smooth function of the spread or forward rate differential. The disturbance
terms can be from a general class of densities, not just the normal. Given the leptokurtosis (‘fat-
tailed” distributions) in bonds and bills, first uncovered by Fama and Roll (1968), the usual
higher-moment assumptions may be counterfactual. These minimal restrictions on the model
will enable me to test a number of competing theories.

I employ a non-parametric nearest-neighbours approach developed by Cleveland (1979).
Nearest-neighbours regression uses the data scatter to weight more heavily observations near (in
the mean square sense) to the dependent variables. Unlike ordinary least squares, which fits the
regression surface globally, the nearest-neighbours estimator provides a local approximation. A
consistent estimate of the conditional mean is achieved without parametric specification
assumptions. Below, I use the non-parametric procedure successfully both in and out of sample.

I argue that the appropriate criterion by which to judge term structure models is in terms of
forecasting. The paper therefore focuses on determining whether a non-linear model can produce
superior predictions of future interest rates. I also employ formal testing procedures for
determining what constitutes a significant forecast improvement. Relying on work in Mizrach
(1995), the sample correlation coefficient between forecast errors is adapted as a test statistic for
forecast comparison. This procedure will enable me to verify statistically that a forecast
improvement of a certain number of basis points is significant or not. Previous efforts have only
reported Thiel’s mean-squared error ratio or relied on Efron’s (1983) bootstrap methodology.

The organization of the paper is as follows. The next section extends the continuous and
discrete time frameworks for the term structure to a non-linear setting. The third section reports
least squares estimates of the standard model. Looking first at forward rates, I confirm existing
results on the non-risk adjusted term structure. The 91-day-ahead, 91-day forward rate is a
consistently biased predictor of the future spot rate for 3-month Treasury bills. The 3-and 6-
month interest differential fits badly in-sample. The poor results serve as motivation for the non-
parametric procedure in the fourth section.

In the fifth section I look at a number of non-parametric models in-sample. A non-linear
autoregressive model outperforms its linear counterpart, and the same is true of the spread
equation. Interestingly, a squared neighbour term proves particularly useful for both estimation
and forecasting.
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The sixth section is devoted to forecasting. I construct the test statistic used to evaluate
forecast improvement and compare the out-of-sample performance of several non-linear
models. Non-linear versions of the spread proved to be the best predictors. They dominate the
forward rate at a high level of significance.

In the seventh section, I pool some of the forecasts from Section 5 to extract more
information out of the data. A simple weighted average of the two best mon-parametric
forecasts has a mean squared error less than half that of the forward rate. I am also able to show
that a constant risk premium cannot salvage the linear expectations hypothesis. The final section
presents some conclusions.

THE EXPECTATIONS HYPOTHESIS

This section develops the standard term structure framework in both discrete and continuous
time. I show that the non-linear model nests both of the linear models as special cases. I also
point out the principal areas in which non-linearity is likely to enter the term structure.

The discrete time framework
The linear discrete time framework assumes that bonds are priced using the present value
formula.' The price at time ¢ of a 1.00 dollar, z-period bond paying coupon i, p®, is given by

R 1.00
B . ey
i ; A+iPY @+ +iP)
where i is the one-period spot rate. The holding period yield is the change in price plus the coupon,
P penody P po
H®= (/" -p+D)/p/” 2

The Shiller (1979) linearization proceeds by assuming that the capital asset pricing model holds,
that is,

E[H")= i+ ¢ 3)

where ¢ is a constant term premium. Substituting equation (2) into (3) and linearizing around
the coupon rate yields the following expression for the long rate:

Tl
i?=Y WEGD)+o? 4
j=0

where W, = g,(1-¢)/(1-g"), g=1/(1 +1), and ®” is a weighted sequence of risk terms ¢ *)

In Shiller, Campbell and Schoenholtz (1983, SCS), a compact expression for the holding
period yield is derived using the concept of duration. The duration of a t-period bond with
coupon i is given by

D.=(1-g"/(1-9) )
The resulting linear approximation for the holding period yield is
D,i” - (D.-Dy) (i{")
D,
Note that since the coupon effects are second order, they drop out of equation (6).

H = (6)

! This formula can be derived in, say, the Lucas (1978) framework with linear utility.
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Denote the j-period-ahead forward rate on a 7 — j period bill by F\- *~ /. The forward rate is
also conveniently written in terms of duration,

(1) ()
Dy =Di;

= @
D, -D;
For concreteness, let j=1and 7=2,
paon _ Dai”=Dyii”
an_ 2t 17
D, - D,
For bills, the duration is simply their time to maturity. Hence,
F,“'” e 23{(2) = i,“’
The expectations hypothesis assumes that forward rates equal expected future spot rates:
Qi) = PO = i =2 - i) @®
One can also allow for a forward term premium
2108 "'f’EFfi' Ee) (ff:}ﬂ)' 9

Equation (8) then becomes
AiM )e=-20""+2(3i2-iV)

Non-linearity is implicit in the discrete framework. Rewriting the holding period yield in
terms of yield to maturity as in Shiller,

5 SRy e 1)), L ripeeaT) r=1)ar=1
I+@fiia )+ - Dfiva N +in, ) 5

H(f] 2B = = 1
: G /i) + (= DN +i®T
For 7=2 and { = 0, taking expectations yields
(1) (1) e (1) e
(ear) (G ) L+ ()] o+ (D) + ¢ (10)

PP+ PP
As Shiller notes, equation (10) is a non-linear rational expectations difference equation in the
one-period expected spot rate. A conjectural solution takes the form

i"=E[fG®, i), ¢ @] (1)
Assuming that equation (11) is invertible, this is an equation for the expected future spot rate,
@i ) =g, i®, ) (12)

There is much empirical support that ¢ in equation (3) is time varying (see e.g. Startz, 1982).
Equation (12) can also then be interpreted as the SCS model in which ¢ has a time subscript.

The continuous time framework
Alternatively, Cox, Ingersoll and Ross (1985, CIR) consider a continuous time representative
agent economy. Agents maximize

r ne
E[ e [M]ds (13)
! Y
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where p is a constant discount factor and y is a risk aversion parameter. Agents must choose
optimal consumption, ¢*, and proportions, ™, to invest in a vector of production technologies,
¥

Consider the special case in which Y is a single state variable. Assume also that the mean and
variance of the rates of return, r(Y), are proportional to Y. Let ¥ evolve according to the
following stochastic differential equation:

dY(e) = [EY + £) dt + WY dw(D) (14)

where & and £ are constants, with £>0, v is a vector whose first argument is a constant v,. and
w(t) is a one-dimensional Weiner process. The equilibrium interest rate, CIR show, is a
diffusion process

dr=1x(0 - r) dt+ o\NrwWY dw(r) (15)
with x, 6, o constant, and ¥0>0, o>>0. The first term is the drift of the diffusion, and the
second term is the variance.

The advantage of process (15) is that the conditional moments are described solely by past
observations. The conditional mean and variance are given by CIR as

Elr(s) | r()l=r(t)e " *C- 2+ 0(1 -~ "¢~ ") (16)

var[r(s) | r())=r(®)(o*/x)(e  *¢~"—-e =04 (Go*/x)(1 —e ™ ¥~ 1)? 17)

A closed-form solution for bond prices is then obtained. Let P(z, t) be the price at time ¢ of a

default-free discount bond with time to maturity , and let p(z,t) be log(P(z,t)). CIR then
show

p(z,t)=a(z, t)+ b(z, Hr(t) (18)
where
[(e+ A+ 9)(r - 0]f2 2u8)o”
a(z, 1) = log [ 2pe ] (19)
K+A+)E " -1)+2¢
ylir=n _
b= [ 26wl ] 20)
K+A+9)(e"" " -1)+2y
with
Y= ((x+2)+20%)"? 1)

A is a factor risk premium.

Assumptions (13)—(15) required to linearize the continuous time framework give it many of
the same empirical implications as the discrete time model. To see this, define the yield to
maturity, el~ "~ 2 2= P(z, ¢). One then has the following simple expression for the spot rate:

i(r,t)=[r()b(z, t)—a(z,Hl/(z—1) (22)
The spread becomes a linear function of the instantaneous rate of interest,
i(r,)—i(z-1,0)=a+ pr() (23)

where a=a(r-1,0)/(r-1-1)-a(z,)/(z-1), and B=b(r,0)/(z—-1t)-b(r-1,1)/
(7 — 1 —t). The forward rate is given by

F(r=-1,t)=p(r-1,t+1)=p(z, 1) (24)
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Consider for concreteness 7 = 1, 2. The forward rate reduces to
F(1,)=2-0i2,H-1-0i(,1
which is identical to equation (7) with ¢ = 0. As for the holding period yield,
H(z,t+1)=p(r-1,t+1) - p(z,1) 25)
For two-period bonds,
HZ2,t+)=p,t+1)-p(2,1)

The classic implication in the discrete time framework is that expected holding period yields
should be equal across maturities. Taking expectations on both sides of equation (25),

EHQ2,t+1)=p(,t+1)*-p@2,1)=H(,t+1) (26)
Substituting from above, it follows that
i(l,t+1)*=F(1,1 27)

The expected one-period spot rate equals the forward rate, just as in equation (8).

The CIR one-factor model does not appear to be supported empirically. Brown and Dybvig
(1986) estimated the underlying parameters of equation (15) using a cross-section of interest
rates. They found considerable time series variation in these parameters across sub-periods.
Gibbons and Ramaswamy (1993) derive non-linear restrictions from the CIR model, but they
look only at the unconditional moments of bonds returns. Gibbons and Ferson (1985) and
Stambaugh (1988) have tried to estimate the dimension of the factor matrix. Both reject the
one-factor model, though Stambaugh cannot reject a model with three factors.

Langetieg (1980) and Oldfeld and Rogalski (1987) have extended the arbitrage approach to
multifactor models.? The pricing expression (18) becomes

p(z, 1) =a(z, 1) + b(z, Hx(1) 28)

where x(t) is now a k-dimensional vector of factors.
In the empirical work that follows, I utilize a non-linear version of equation (28), allowing
the spot rates to vary smoothly with the factors,

i(z, 1) = f(x(1)) 29)

This functional form can capture the time variation in the parameters of equation (15) found
by Brown and Dybvig. Similarly, if the factors followed more complicated stochastic processes,
the conditional expectations (16) and (17) might be non-linear functions as well. Forecasting
exercises below will use equation (29) to predict out of sample,

i(Lt+D)=fx(t+1) | x(0) 30

This is identical to the discrete model (12) with x(¢) = [i(1, 1), i(2, 1), ¢ ]. Therefore, the non-
linear model nests the two popular models as special cases.

*These models have a much more tenuous equilibrium foundation. There is no guarantee, for arbitrary stochastic
processes for the factors, that an equilibrium will even exist.
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THE LINEAR MODEL REVISITED

I begin the empirical investigation where previous work left off by estimating the standard linear
model for 3- and 6-month treasury bills. Its many inadequacies leads me to the more general
models that follow.

In-sample estimation of the linear model

In the simplest version of the expectations hypothesis, the term premia are ignored. The current
two-period rate equilibrates the current one-period rate and the expected future one-period spot
rate. A straightforward test of the model would be that the forward rate be an accurate predictor
of the realized change in the spot rate. The standard test is to regress the realized Ai‘"), on the
forward spread:

Ai) = a+ BOFD = i)+, (31)

The linear model with rational expectations implies that @ =0, and f= 1, and that g, , should
be serially uncorrelated. These restrictions imply that the forward rate is the only variable
necessary to predict changes in the spot rate.

Equation (31) is one of the most widely studied relationships in economics. The strict version
has been widely tested and rejected. Shiller, Campbell and Schoenholtz (1983), Fama (1984)
and Froot (1989) reject the model, finding that v<1, and a>0. For the very short rates, § is
often insignificantly different from zero. Mankiw and Miron (1986), Shiller(1979) and Mankiw
and Summers (1984) also reject variants of equation (31). Froot (1989) also contains an
excellent survey of these results.

While equation (31) is soundly rejected, authors such as Fama (1984) find the yield curve
does contain information. His innovation was to ask the alternative question as to whether the
slope of the yield curve does provide any guide to changes in future short rates. Consider the
linear version of equation (12):

A(rll 1=a+ ﬁ(iraz = l-rm) + U (32)

As Fama shows, even when tests of equation (31) fail, one often finds that 8 in equation (32) is
significantly positive.

Data and testing

I have a sample of almost 3000 daily interest rate observations from the Bank of America for
the period January 1980 to December 1987 for 3- and 6-month (13 and 26 weeks respectively)
Treasury bills. This data set was split into two blocks for analysis. The period from May 1980 to
December 1984 was used for estimation purposes to allow consistent comparisons throughout
the paper. January 1985 to December 1987 is then reserved for forecasting exercises.
Wednesday rates were chosen from the daily data to form a weekly data set of 413
observations.’

OLS estimation of equation (31) is reported in line one in Table I. While significantly
positive, the slope term is significantly different from one. The constant term is strongly
negative. This reflects in part the drop in interest rates in the first part of the sample. This will
show up again as a strong negative bias. The R? is above 10%, and the forward rate proved to be
the best in-sample predictor.

*There were five observations missing bom the sample. In each case, the Thursday rates were used instead.
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Table I. OLS estimation of the linear model*

Model Constant Slope R? DW

Forward rate (31) -4.248 0.366 0.101 0.095
(=5:52) (=5.30)

Spread (32) -0.336 0.886 0.022 0.087
(-2.06) (—=2.55)

*The dependent variable is the 13-week difference in the 91-day Treasury bill rate.
The estimation interval is 5/14/80 to 12/26/84. T-statistics are in parentheses. DW
is the Durbin—Watson statistic.

Line two of Table I reports the OLS estimation of equation (32). The spread is the difference
between current 3- and 6-month rates. The slope coefficient is significantly different from zero,
but also significantly different from two as would be implied by equation (8). The constant is
significantly negative which is compatible with the existence of a term premium. Clearly,
additional work needs to be done. The next section develops the non-parametric procedures I
will need to estimate the more complicated term structure models.

NEAREST-NEIGHBOURS ESTIMATION

Motivation

Non-parametric statistical procedures are ideal tools when there is little a priori information as
to the structural model. Minimal assumptions are required for purposes of inference. Consider a
function for the conditional mean of y given observations on exogenous variables x:
Ely | x]=f(x). Suppose that the functional form is unknown and the realized values of y differ
from f(x) by disturbances drawn from a general class of densities. Parametric assumptions will
almost surely result in specification error. Even when the functional form is appropriately
specified, the disturbances may not be normally distributed, and least squares estimates may be
highly inefficient.

In practice, most data analysts would assume the conditional mean to be smooth, take a
Taylor expansion, drop the higher-order terms, and assume that the disturbance term is normal.
Much of the empirical work on the term structure proceeds in one of these two ways.

However, neglecting the higher-order terms of a Taylor expansion can lead to misleading
inference. A truncated Taylor expansion estimated by least squares does not provide any
information per se on the linear terms of the expansion. As White (1980) has stressed, least
squares is a global approximation to a regression function. Least squares solves the problem

min ) [y, - f(B)I° (33)
PBEB el

If I were to replace an analytic* f(8) with the first two terms of a Taylor series approximation, the
solution to equation (33), call it 8%, will generally not resemble in any way the coefficients of the
Taylor expansion. White shows that 8™ is the solution to a weighted least squares approximation to

*This implies that f is a smooth function and that all its partial derivatives exist.
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the true model. Only in the case where the approximation differs by an independent additive error
term will 8% provide correct inference. In addition, if the disturbances to equation (33) are not
normally distributed, least squares will not be the maximum likelihood estimator,

The nearest-neighbours estimator is motivated by the desire to achieve the appropriate local
weights for a Taylor expansion. To see this, index the sample points into pairs (y, x,),
i=1,...,n. Now search across the entire sample of &/s, i1, near to the current x, X,. A Taylor

expansion of the conditional mean x, around any x;,
Y =f(x|') (I; 5F I;) +f‘ (X;)(X, = xi)2 i (34)

can be fit more accurately if I choose points near to x,. For example, suppose y is thought to be
the first-order Markov process

Y= px,+ &, (35)

A regression of the y's on the x/s nearest to x, will provide an accurate estimate of p- Suppose
that equation (35) is misspecified and the true model includes a squared term,

Y= px,+pxl+e, (36)

This falls into the case considered by White, and least squares would not accurately estimate p
using the specification (35).

Given our assumptions on Jf, though, there exists a smooth inverse function relating x to y.
The nearest-neighbours procedure chooses the g-nearest y;s for which V(x; - x,)? is small. I can

then express the conditional expectation as a function of values for the dependent variable,

q
Ely|x]1=) wy, 37
k=1
where the w/, are weights that vary with the size of the distance of x, from x,. One can provide a
greater weighting to nearby points with exponential functions of the distance.

Since x{s near to x, will be associated with Ji values near to y, for any functional form
smoothly relating the variables, the nearest-neighbour’s estimator is robust to non-linearities that
invalidate the least squares estimator. I can more closely approximate the Taylor expansion by
fitting the regression surface locally. Regularity conditions are quite minimal. Intuitively, all that
is required is that the functional form possess a Taylor expansion. This intuition in formalized in
the next subsection.

Non-parametric approaches have begun to filter into financial economics. Diebold and Nason
(1990) have analysed ten foreign exchange rates using the locally weighted regression procedure
introduced by Cleveland (1979). Mizrach (1992) extends Diebold and Nason to a multivariate
setting. Frank and Stengos ( 1989) have used the nearest-neighbours estimator to look at precious
metal prices.

Non-parametric statistical techniques are ideal for estimating models that routinely appear in
finance. Non-linearities seem inherent in market relationships. In addition, non- normality seems
to be a key stylized fact about the unconditional distributions of financial data. These facts lead
me to expect that non-parametric approaches will prove fruitful for the term structure.

Neighbour selection and consistency
This section develops the uniformly weighted nearest-neighbours estimator. Consider a
regression model

»=f(x)+e, (38)
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where x,=(x,,,...,X,) is a 1xp vector of explanatory variables, f is a smooth function
mapping R,— R, and ¢, is an independent and identically distributed mean zero disturbance
term. The nearest-neighbour regression function estimate at time ¢ is given by

Foy =Y wlllxi-xl<nly it (39)
i=1
where [ is the indicator function, || . || is the Euclidean norm

1/2
]l Xi— Ir” = [i (xj:' o xjr)21| (40)
Jj=1

7 is some constant, and w;, = (w,,, ..., w,;) is a sequence of probability weights.

Stone (1977) cleverly formulated the consistency problem as being one of obtaining a
consistent sequence of weights for the neighbours. For example, let g be the cardinality of the
vector of nearest neighbours less than # from x,, # {k} = (k,,, ..., k,,). A simple average of the
g neighbours would set w;, = 1/q for all i such || x;— x, || <#, and O otherwise.

Stone proved consistency for probability weights satisfying the following necessary and
sufficient conditions:

EY wif(x) < CEf(x) Vt=1,0>C>0 a1)
i=1
Z w, I[|| x; = x,|| > a] — 0 in probability V, > 0 (42)
i=1
max w;, — 0 in probability (43)

If the weights are uniform, quadratic or triangular, these revert to the familiar conditions that as
n—>e0, g—>oo0, but g/n—>eo. Intuitively, this requires that, as the sample grows large, the
number of neighbours must go off to infinity but at a slower rate than the sample size increases.
Consistency then becomes a matter of imposing a selection rule involving #. As a practical
matter, I will look over a range of g's.

Having selected the neighbours, the next step is to construct estimates of the weights using
least squares. Denote the n x (g + 1) matrix of neighbouring interest rates by

1, ki wavi ke
K = 1 k.,z k,',z i
i Ko s K
which includes a constant term in the first column. The locally weighted regression estimate is
FO) = k(KK 'K Y, (45)

where k, is the tth row of K,, and Y, =[y,, ..., y,]’. The least squares estimates of the weights
will correspond to the simple average only in the unlikely event that the constant is the only
significant regressor in equation (44). This procedure allows the data to weight the neighbours
according to mean-square error loss for the entire regression function.
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THE NON-PARAMETRIC TEST OF THE EXPECTATIONS HYPOTHESIS

As noted earlier I can write a very large class of term structure models in the following manner:
E[AIY), | x]=f(x) (46)

where f: R,—> R is a smooth function relating the p-vector x, of state variables to the future
spot rate. In general, f is unknown and the class of disturbances to equation (46) is not restricted
to the normal density. Nearest neighbours can handle these difficulties, requiring only two inputs
to the estimation, apart from the choice of state variables. We must choose ¢, the number of
neighbours, and the weights w, in equation (37).

The regularity conditions (41)—(43) require an increase in the number of neighbours as the
sample grows large. Since the sample size is fixed in practice, I have chosen to report the results
for a variety of values for g. In preliminary work, I looked at values of g from 1 to 100 (about
25% of the estimation sample). To remind the reader, this means that I regressed the spot rate
on the g nearest values of the spot rate, where distance is measured as in equation (38). The
temporal ordering of the data is irrelevant as the nearby spot rate may come from anywhere in
the estimation sample.” While a large number of neighbours improved the fit in-sample, the best
forecasting models had 10 or fewer neighbours.

I found that the weights had virtually no impact on the analysis. Cleveland (1979) used a
cubic weighting structure. I tried several weights and found little difference from the local
regressions reported in Table II. Down weighting the outlying neighbours only had the effect of
making models with a large number of neighbours perform similarly to those with only a few
(g=<10).

In Table II, I contrast the nearest-neighbours estimator with the two reduced forms prevalent
in the literature. I first considered autoregressive models of order p,

E[ALf), | x)=fAiD,...,Ai) ) 47

In line three of Table II an OLS estimate of the linear AR(1) performed dismally. The R? is
negative. Higher-order autoregressive models, thought not reported, fared little better.

Based on Fama’s suggestion, I set the factor matrix equal to current and lagged values of the
spread between 3- and 6-month bills:

. L (2 . . .
ELAiS), | x)=fG2 =% i =102 ,00) (48)

As noted earlier this model with p=1 showed some merit, but it was still dominated by the
forward rate in sample.

Non-parametric formulations of these two equations fill out most of the rest of Table II. In
column one the first information provided is the choice of state vector, x. For instance, AR (4)
indicates equation (47) with p=4, and Spread AR(4) is equation (48) with p=4. g— NN
denotes the number of neighbours in the locally weighted regression; thus, 5 — NN indicates 5
neighbours.

I also developed non-linear formulations of the neighbour regressions, allowing the spot rate
to vary with the cross products of the neighbours,

E[Ai)| x]=g(k) = f i kiskes 49)

r=1s=1

*In the forecasting exercises, the sample is dynamically updated.
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Table II. Term structure models: in-sample estimation®

Model R? Rank
Forward rate 0.101 1
Spread 0.022 4
AR(1) -0.004 13
Spread 1 — NN 0.022 6
Spread 5 — NN 0.015 9
Spread 10 — NN 0.022 5
Spread AR(4) — NN -0.002 10
AR(1) 1 — NN —-0.004 12
AR(1)5 - NN 0.060 3
AR(1) 10 — NN 0.100 2
AR(4) 1 — NN -0.002 11
Non-linear Spread 1 — NN 0.018 8
Non-linear AR(1) 1 — NN 0.020 7

*The estimation inteval is 5/14/80 to 12/26/84, a total of 242
observations. The dependent variable in each cases is the change in
the 3-month Treasury bill rate.

I found that squared own neighbour terms worked best. This restricts s to equal r in equation
(49). In Tables II and III the models labelled as non-linear include squares of the neighbours as
explanatory variables. These models performed poorly in-sample but were quite helpful in the
out-of-sample analysis below.

The in-sample nearest-neighbour estimates fared no better than their linear counterparts. For
the spread equation, models of 1, 5 and 10 neighbours provided less than 5% of the explained
variation in the 3-month rate. A fourth-order autoregressive spread model fared little better. For

Table IIl. Term structure models: forecasting’

Model Bias MSE Rank K-stat.
Random walk -15.32 34.17 11 1.780
Forward rate -3547 45.21 14 2.967
Spread 9.74 3131 4 0.612
AR(1) 9.37 3294 10 1.594
Spread 1 — NN 9.74 31.29 3 0.365
Spread 5 — NN 8.03 32.17 7 0.966
Spread 10 — NN 5.36 32.10 6 0.911
Spread AR(4) 1 — NN 3.44 31.97 5 1.296
AR(1)1 — NN 9.40 32.92 9 1.584
AR(1)5 — NN 4.88 40.38 13 3.433
AR(1) 10 — NN 4.86 76.29 15 5.634
AR(4) 1 — NN 2.61 34.36 12 1.789
Non-linear Spread 1 — NN 6.24 30.83 2 0.365
Non-linear AR(1) 1 — NN 9.40 3291 8 1.554
Combination 0.18 30.38 1

*The estimation interval is 5/14/80 to 12/26/84, a total of 242 observations. Fifty-two
observations from 3/27/85 to 3/26/86 are used for forecast combination. The forecast
interval is 4/2/86 to 12/30/87, a total of 92 observations. Bias and mean squared error
(MSE) are x10 -2, K-stat. is given in the text by equation (53). It is distributed as a standard
normal variable, with a 90% two-sided critical value of 1.65.
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the non-parametric autoregressive models, things seem a little brighter. While the AR(1) and
AR(4) I-neighbour equations perform badly, the 5- and 10-neighbour equations seem
promising. The 10-neighbour equation is the only non-linear model to explain as much as the
forward rate.®

Based on R?, the non-linear models do not distinguish themselves from their linear analogs in
sample. However, they do offer significant improvement in their out-of-sample predictive
power. Forecasting is arguably the best way to compare these models, so I now turn to the
analysis out of sample.

A COMPARISON OF FORECASTS

Evaluating forecast improvement
While finding correlation in the term structure with future state variables provides useful
information, the expectations hypothesis is, above all, a bond pricing theory. The true test of
such a model is its ability to predict the path of future interest rates, and I need a precise way to
discriminate between alternatives. Following Mizrach (1995), I propose a formal test for
evaluating improvement in forecast performance. Surprisingly, there is very little literature on
this subject.

Consider two forecasts, z, and z,, and let the respective forecast errors be ¢;=y—z;, i=1,2.
Let MSE, be the mean squared error of forecast i:

MSE, = (1/n) Z el (50)
t=1

This application requires some way to determine if two mean squared errors are different from
one another. The standard F-test is tempting but not appropriate here. The two MSEs are not
draws from independent random samples. "

Following Granger and Newbold (1986), assume that (e,, ,) is a bivariate normal population
with zero mean and finite variances o} and o3. Each forecast is assumed to be unbiased and
serially uncorrelated. Consider now the normally distributed random variables (e, + e,) and
(e;—ey):

El(e,+ey)(e, - e))]=0{~ 0] (1)
The two error variances will be equal if and only if this pair of random variables is

uncorrelated, i.e. p=0. A simple test for equality of the MSEs is then based on the sample
correlation coefficient:

Z (e!: + e2:) (eI; 8 ez:)
r= =) (52)

n n 1/2
D (eu+en) ) (en—en)

t=1 r=1

®Regressions with 25 neighbours or more were able to push the R? well above the forward rate.
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a combined forecast which is a weighted average of z, and z,. The forecast error variance is:
ol=w’ol+ (1 - w)oi+2w(l - w)po,0, (55)
I can minimize this expression by setting

2
03— PO,0;
w=— 2 2F’C’l 2 (56)
o1+ 03— 2p0,0;
In implementing equation (55), I use sample analogs, using the first year of forecasts. I then use
the combined forecast for the remainder of the sample. In a number of combinations not

reported below, the weights

S
Zen
t=1

w=—"1 (57

n

D (el +e3)

t=1

which ignore the correlation between forecasts, worked best. A combined forecast of the non-
linear AR (1) and non-linear spread models has the lowest MSE in Table III.

To ascertain the statistical significance of these improvements, the statistic K in equation (53)
was computed for all the forecasts relative to the combined forecast. The best forecast is
statistically better than the random walk, forward rate or simple AR(1) model. The only
parametric model that compares with the best forecast is the simple spread equation, (32)
Accounting for non-linearities, though, reduces the MSE by 3%, a large amount for weekly
returns. The pooling also eliminates nearly all the bias.

CONCLUSION

The empirical tests of traditional term structure models have generally been discouraging. This
paper argues that this is due to the linear approximations and the failure to account for non-
normality in the error structure. This paper has developed a framework that allows for a non-
linear specification of the spot rate and a general class of disturbances. By using a non-
parametric procedure, nearest-neighbours regression, I was able to test generalizations of the
two standard theories.

After looking both in and out of sample, I chose a forecast competition as the metric. I was
able to statistically validate an improvement in forecast performance over the traditional models.
In-sample fit proved to be a highly unreliable guide as to how a model would perform out of
sample. This makes a strong case for forecast comparisons as model selection criteria.

My results indicate that there is some fundamental information in the spread for the path of
future spot rates. None of the autoregressive models, including the non-parametric estimates,
predicted as well as the spread. I believe that this is because the purely autoregressive models are
misspecified. The forecasts only remind us that sophisticated estimation and forecasting
procedures cannot rescue a misspecified model. However, non-parametric methods greatly
expand the class of models that can be considered for empirical analysis, and I hope that this
paper inspires new theoretical as well as empirical work on the term structure.

In all, the results indicate that non-linearities are abundant. Even at very short horizons and at
the short end of the maturity spectrum, non-linear models improve point prediction. A power
function of the neighbour terms proved to be the real breakthrough in the forecast competitions.
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Pooling information from competing non-linear models enabled me to further improve the
forecasts.

I conclude that a great deal of information can be gained from a non-parametric approach to
the term structure. In future work, I intend to look at bonds, where the non-linearities are likely
to be even more pronounced.
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